Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(6): 3200-3209, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315448

RESUMO

Deoxynivalenol (DON) is a phytotoxic agent supporting the spread of fungal diseases in cereals worldwide, i.e., fusarium head blight. It is known that DON accumulation may elicit changes in plant secondary metabolites in response to pathogen attack. This study maps the changes in selected secondary metabolite classes upon DON contamination occurring in fifteen Triticum spp. genotypes, among them emmer, spelt, and soft wheat, and 2 tritordeum varieties, cultivated in two different sites and over two harvest years. The main phenolic classes (i.e., alkylresorcinols, soluble, and cell-wall bound phenolic acids) were targeted analyzed, while changes in the lipidome signature were collected through untargeted HRMS experiments. The results, obtained across multiple Triticum species and in open fields, confirmed the modulation of first-line biological pathways already described in previous studies involving single cereal species or a limited germplasm, thus reinforcing the involvement of nonspecific chemical defenses in the plant response to pathogen attack.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Grão Comestível/química , Micotoxinas/metabolismo , Tricotecenos/metabolismo , Estações do Ano , Fusarium/metabolismo , Doenças das Plantas/microbiologia
2.
Mycotoxin Res ; 40(1): 203-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236484

RESUMO

Thirty-two varieties of common and durum wheat, hordeum, barley, and tritordeum collected over two harvesting years (2020 and 2021) were investigated for the presence of multiple Fusarium-related mycotoxins in asymptomatic plants. DON, 3-AcDON, 15-AcDON, T-2, HT-2, and ZEN together with the emerging mycotoxin ENN B and the major modified form of DON, namely DON3Glc, were quantified by means of UHPLC-MS/MS. Overall, DON and ENN B were the most frequently detected mycotoxins, albeit large inter-year variability was observed and related to different climate and weather conditions. Straws had higher mycotoxin contents than kernels and regarding DON occurrence tritordeum was found to be the most contaminated group on average for both harvesting years, while barley was the less contaminated one. Emerging mycotoxin ENN B showed comparable contents in kernels compared to straw, with a ratio close to 1 for tritordeum and barley. Regarding the occurrence of the other evaluated mycotoxins, T-2 and HT-2 toxins have been spotted in a few tritordeum samples, while ZEN has been frequently found only in straw from the harvesting year 2020. The data collected confirms the occurrence of multiple Fusarium mycotoxins in straws also from asymptomatic plants, highlighting concerns related to feed safety and animal health. The susceptibility of Tritordeum, hereby reported for the first time, suggests that careful measures in terms of monitoring, breeding, and cultural choices should be applied when dealing with his emerging crop.


Assuntos
Fusarium , Hordeum , Micotoxinas , Tricotecenos , Animais , Micotoxinas/análise , Triticum , Tricotecenos/análise , Espectrometria de Massas em Tandem , Grão Comestível/química , Contaminação de Alimentos/análise
3.
Front Plant Sci ; 14: 1240313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023856

RESUMO

Maize cropping systems need to be re-designed, within a sustainable intensification context, by focusing on the application of high-use efficiency crop practices, such as those that are able to enhance an early plant vigor in the first critical growth stages; such practices could lead to significant agronomic and yield benefits. The aim of this study has been to evaluate the effects of the cultivation of hybrids with superior early vigor, of the distribution of starter fertilizers at sowing, and of the seed application of biostimulants on promoting plant growth and grain yield in full factorial experiments carried out in both a growth chamber and in open fields. The greatest benefits, in terms of plant growth enhancement (plant height, biomass, leaf area) and cold stress mitigation, were detected for the starter fertilization, followed by the use of an early vigor hybrid and a biostimulant seed treatment. The starter fertilization and the early vigor hybrid led to earlier flowering dates, that is, of 2.1 and 2.8 days, respectively, and significantly reduced grain moisture at harvest. Moreover, the early vigor hybrid, the starter NP fertilization, and the biostimulant treatment increased grain yield by 8.5%, 6.0%, and 5.1%, respectively, compared to the standard hybrid and the untreated controls. The combination of all the considered factors resulted in the maximum benefits, compared to the control cropping system, with an increase in the plant growth of 124%, a reduction of the sowing-flowering period of 5 days, and a gain in grain yield of 14%. When choosing the most suitable crop practice, the diversity of each cropping system should be considered, according to the pedo-climatic conditions, the agronomic background, the yield potential, and the supply chain requirements.

4.
Front Plant Sci ; 14: 1240310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023909

RESUMO

The sustainable intensification of maize-based systems may reduce greenhouse-gas emissions and the excessive use of non-renewable inputs. Considering the key role that the microbiological fertility has on crop growth and resilience, it is worth of interest studying the role of cropping system on the rhizosphere bacterial communities, that affect soil health and biological soil fertility. In this work we monitored and characterized the diversity and composition of native rhizosphere bacterial communities during the early growth phases of two maize genotypes of different early vigor, using a nitrogen (N)-phosphorus (P) starter fertilization and a biostimulant seed treatment, in a growth chamber experiment, by polymerase chain reaction-denaturing gradient gel electrophoresis of partial 16S rRNA gene and amplicon sequencing. Cluster analyses showed that the biostimulant treatment affected the rhizosphere bacterial microbiota of the ordinary hybrid more than that of the early vigor, both at plant emergence and at the 5-leaf stage. Moreover, the diversity indices calculated from the community profiles, revealed significant effects of NP fertilization on richness and the estimated effective number of species (H2) in both maize genotypes, while the biostimulant had a positive effect on plant growth promoting community of the ordinary hybrid, both at the plant emergence and at the fifth leaf stage. Our data showed that maize genotype was the major factor shaping rhizosphere bacterial community composition suggesting that the root system of the two maize hybrids recruited a different microbiota. Moreover, for the first time, we identified at the species and genus level the predominant native bacteria associated with two maize hybrids differing for vigor. These results pave the way for further studies to be performed on the effects of cropping system and specific crop practices, considering also the application of biostimulants, on beneficial rhizosphere microorganisms.

5.
J Agric Food Chem ; 71(42): 15821-15828, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37843173

RESUMO

Ergot alkaloids (EAs), mycotoxins produced mainly by fungi of the Claviceps genus, have been frequently reported in rye, while their increasingly frequent occurrence in other cereals is likely related to weather conditions, with the incidence of ergot sclerotia in winter grains being related to heavy rainfall and moist soils at critical periods. However, compared to other regulated mycotoxins, data about the prevalence and occurrence of EAs in major and minor cereals harvested in the Mediterranean growing areas are still scant. In this regard, the current study reported the occurrence of EAs in 18 genotypes of winter cereals harvested over 3 years from an experimental field located in North Italy which were analyzed by HPLC-MS/MS. Results indicate a widespread occurrence of all the major EAs in all the considered cereal crops, especially under supportive meteorological conditions. EA contamination was dependent on the harvest year (p < 0.0001) which was particularly high in 2020 for all the considered species. The results also demonstrated a large co-occurrence of EAs with 98 cereal samples out of 162 contaminated with at least one of the 12 EAs (60% positive samples) in the range LOD: 15,389 µg/kg (median value: 2.32 µg/kg), expressed as the sum of the EAs. Rye was confirmed to be the crop more susceptible to the fungal infection (EAs content up to 4,302 µg/kg). To the best of our knowledge, we have reported the accumulation of EAs in tritordeum (LOD: 15,389 µg/kg) and in emmer (LOD: 1.9 µg/kg) for the first time.


Assuntos
Alcaloides de Claviceps , Micotoxinas , Alcaloides de Claviceps/análise , Grão Comestível/química , Espectrometria de Massas em Tandem/métodos , Micotoxinas/análise , Itália , Contaminação de Alimentos/análise
6.
J Agric Food Chem ; 71(36): 13220-13233, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37641979

RESUMO

Twelve pigmented wheat genotypes, one tritordeum, and one common wheat were grown in three field experiments under varying nitrogen (N) fertilization rates to investigate the contributions of genotype, environment, and fertilization on the levels of phenolic acids, anthocyanins, carotenoids and antioxidant capacity of the grains. Soluble phenolic acids increased significantly (+16%) in the environment with high soil N content, while bound phenolic acids and anthocyanins decreased (-16 and -57%). N fertilization affected the agronomic and qualitative traits but had limited effects on some bioactive compounds (bound phenolic acids and anthocyanins). The greatest differences appeared among the color groups and within the same color types, with the black group showing the most anthocyanins and phenolic acids (34.4 and 1207 mg·kg-1) and the highest antioxidant capacity. Some of the cultivars could be promising for the development of innovative supply chains and the production of functional foods, as they showed good yield and quality performances, and good antioxidant features.


Assuntos
Antioxidantes , Triticum , Triticum/genética , Antocianinas , Poaceae , Genótipo
7.
Front Plant Sci ; 14: 1130543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235035

RESUMO

Rye is a secondary crop that is characterized by a higher tolerance to climatically less favorable conditions than other cereal species. For this reason, rye was historically used as a fundamental raw material for bread production and as a supply of straw in northern parts of Europe as well as in mountain environments, such as Alpine valleys, where locally adapted landraces have continued to be cultivated over the years. In this study, rye landraces collected in different valleys in the Northwest Italian Alps have been selected as the most genetically isolated within their geographical contexts and cultivated in two different marginal Alpine environments. The traits concerning their agronomy, mycotoxin contamination, bioactive content, as well as their technological and baking quality were assessed to characterize and compare rye landraces with commercial wheat and rye cultivars. Rye cultivars showed the same grain yield level as wheat in both environments. Only the genotype selected from the Maira Valley was characterized by tall and thin culms and a proneness to lodging, thereby resulting in a lower yield capacity. Among the rye cultivars, the hybrid one presented the highest yield potential, but also the highest susceptibility to the occurrence of ergot sclerotia. However, the rye cultivars, especially the landraces, were characterized by higher concentrations of minerals, soluble fibers, and soluble phenolic acids, and thus both their flours and breads had superior antioxidant properties. A 40% substitution of refined wheat flour with whole-grain rye flour led to a higher dough water absorption and a lower stability, thereby resulting in lower loaf volumes and darker products. Agronomically and qualitatively speaking, the rye landraces diverged significantly from the conventional rye cultivars, thus reflecting their genetic distinctiveness. The landrace from the Maira Valley shared a high content in phenolic acids and good antioxidant properties with the one from the Susa Valley and, when combined with wheat flour, turned out to be the most suitable for bread making. Overall, the results have highlighted the suitability of reintroducing historic rye supply chains, based on the cultivation of local landraces in marginal environments and the production of value-added bakery goods.

8.
Plants (Basel) ; 12(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840042

RESUMO

Twelve Triticum aestivum L. spp. aestivum varieties with pigmented grain, namely one red, six purple, three blue, and two black, were grown in open fields over two consecutive years and screened to investigate their risk to the accumulation of multiple Fusarium-related mycotoxins. Deoxynivalenol (DON) and its modified forms DON3Glc, 3Ac-DON, 15Ac-DON, and T-2, HT-2, ZEN, and Enniatin B were quantified by means of UHPLC-MS/MS, along with 14 different cyanidin, petunidin, delphinidin, pelargonidin, peonidin, and malvidin glycosides. A significant strong influence effect of the harvesting year (p = 0.0002) was noticed for DON content, which was more than doubled between harvesting years growing seasons (mean of 3746 µg kg-1 vs. 1463 µg kg-1). In addition, a striking influence of varieties with different grain colour on DON content (p < 0.0001) emerged in combination with the harvesting year (year×colour, p = 0.0091), with blue grains being more contaminated (mean of 5352 µg kg-1) and red grain being less contaminated (mean of 715 µg kg-1). The trend was maintained between the two harvesting years despite the highly variable absolute mycotoxin content. Varieties accumulating anthocyanins in the pericarp (purple coloration) had significantly lower DON content compared to those in which aleurone was involved (blue coloration).

9.
Food Chem ; 398: 133936, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36027659

RESUMO

This study investigated the impact of seed coats from peas (PC) and chickpeas (CC) (at 15 % and 30 % levels) on rice-based co-extruded snacks. Using PC and CC reduced the content of soluble (29 %) and cell-wall bound phenolic acids (21 %), but it enhanced the amount and the profile of flavonoids of rice-based snacks (up to 16 times with PC), resulting in significantly higher antioxidant activity (134 %). Snacks with 15 % CC showed a higher section area (about 335 versus 191 mm2) and a lower average pore radius (20.1 versus 23.9 mm) than PC-snacks; however, such features did not affect either texture or porosity. At 30 % level, PC resulted in a more porous structure (porosity: 73.1 versus 66.7 %) with smaller pores (17.2 versus 27.3 mm) and high firmness (55.9 versus 40.1 N). Consumers' acceptability evaluation revealed that samples containing pulse seed coat were comparable and preferred to the control (i.e., 100 % polished rice).


Assuntos
Cicer , Oryza , Cicer/química , Oryza/química , Fenóis/metabolismo , Sementes , Lanches
10.
Food Chem ; 403: 134369, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191415

RESUMO

The suitability of chickpea, red lentil and green pea for the production of extruded products (i.e., snacks and pasta) was studied. Besides starch and technological properties, the impact of processing on some bioactive compounds was evaluated. The best results were obtained for lentil: the snacks showed the lowest porosity (21 %), the highest average pore radius (18.8 µm), and high expansion (section area: 310 mm2; inner area: 114 mm2), while pasta exhibited low cooking loss (5.7 g 100 g-1) and high firmness (924 N). Extrusion-cooking reduced the soluble phenolic acid content (-45 %) and flavonoids (-41 %), but increased the cell-wall bound phenolic acids and antioxidant activity. The different pulses did not lead to a marked difference in the antioxidant activity of the extruded products, although the lentil maintained the highest flavonoid content after both processes.


Assuntos
Farinha , Lens (Planta) , Farinha/análise , Antioxidantes/análise , Fenóis/análise , Culinária/métodos , Lens (Planta)/metabolismo , Triticum/metabolismo , Flavonoides
11.
Toxins (Basel) ; 14(7)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35878160

RESUMO

The fungal ear rot of maize cultivated in temperate areas is mainly due to the Fusarium species. The use of insecticides against European Corn Borer (ECB) reduces the severity of fungal ear rot as well as the fumonisin (FB) and moniliformin (MON) levels in maize kernels at harvest, which in turn results in a lowering of their effect on deoxynivalenol (DON) control. However, the direct fungicidal control of ear rot has rarely been implemented for maize, and the first studies reported conflicting results on the reduction of mycotoxins. In the present experiment, field trials were carried out in North Italy over three growing seasons to study the effect of fungicide application timings on maize to control mycotoxins, considering the interaction of the application with the insecticide treatment, according to a full factorial split plot design. The mycotoxin content was determined through LC-MS/MS analysis. The field trials showed a significant reduction in ECB severity (75%), fungal ear rot severity (68%), Fusarium Liseola section infection (46%), FBs (75%) and MON (79%) as a result of the insecticide application for all the years, while the DON content increased by 60%. On the other hand, a fungicide application alone or applied in plots protected by an insecticide was never effective for the fungal symptoms, infection or mycotoxin content. The results confirm that a correct insecticide application to control ECB damage is the most effective agrochemical solution for the control of fungal ear rot, FBs and MON.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Inseticidas , Micotoxinas , Cromatografia Líquida , Ciclobutanos , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Fumonisinas/análise , Fungicidas Industriais/análise , Fungicidas Industriais/farmacologia , Fusarium/química , Micotoxinas/análise , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espectrometria de Massas em Tandem , Tricotecenos , Zea mays/microbiologia
12.
Toxins (Basel) ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35878186

RESUMO

The European Food Safety Authority is currently evaluating the risks related to the presence of emerging mycotoxins in food and feeds. The aim of this study was to investigate the role of soil fertility, resulting from different nitrogen fertilization rates, on the contamination of regulated mycotoxins and emerging fungal metabolites in maize grains. The trial was carried out in the 2012-2013 growing seasons as part of a long-term (20-year) experimental platform area in North-West Italy, where five different N rates, ranging from 0 to 400 kg N ha-1, were applied to maize each year. Maize samples were analyzed by means of a dilute-and-shoot multi-mycotoxin LC-MS/MS method, and more than 25 of the most abundant mycotoxins and fungal metabolites were detected. Contamination by fumonisins and other fungal metabolites produced by Fusarium spp. of the section Liseola was observed to have increased in soils that showed a poor fertility status. On the other hand, an overload of nitrogen fertilization was generally associated with higher deoxynivalenol and zearalenone contamination in maize kernels, as well as a higher risk of other fungal metabolites produced by Fusarium spp. sections Discolor and Roseum. A balanced application of N fertilizer, in accordance with maize uptake, generally appears to be the best solution to guarantee an overall lower contamination by regulated mycotoxins and emerging fungal metabolites.


Assuntos
Fusarium , Micotoxinas , Cromatografia Líquida , Fertilização , Contaminação de Alimentos/análise , Fusarium/metabolismo , Micotoxinas/análise , Nitrogênio , Espectrometria de Massas em Tandem , Zea mays/microbiologia
13.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209097

RESUMO

Tritordeum results from the crossbreeding of a wild barley (Hordeum chilense) species with durum wheat (Triticum turgidum spp. turgidum). This hexaploid crop exhibits agronomic and rheological characteristics like soft wheat, resulting in an innovative raw material to produce baked goods. We applied a gel-based proteomic approach on refined flours to evaluate protein expression differences among two widespread tritordeum cultivars (Aucan and Bulel) taking as the reference semolina and flour derived from a durum and a soft wheat cvs, respectively. The products of in vitro digestion of model breads were analyzed to compare bio-accessibility of nutrients and mapping tritordeum bread resistant peptides. Significant differences among the protein profiles of the four flours were highlighted by electrophoresis. The amino acid bio-accessibility and the reducing sugars of tritordeum and wheat breads were comparable. Tritordeum cvs had about 15% higher alpha-amino nitrogen released at the end of the duodenal simulated digestion than soft wheat (p < 0.05). Bulel tritordeum flour, bread and digested bread had about 55% less R5-epitopes compared to the soft wheat. Differences in protein expression found between the two tritordeum cvs reflected in diverse digestion products and allergenic and celiacogenic potential of the duodenal peptides. Proteomic studies of a larger number of tritordeum cvs may be successful in selecting those with good agronomical performances and nutritional advantages.


Assuntos
Pão/análise , Grão Comestível/química , Análise de Alimentos , Triticum/química , Cromatografia Líquida , Digestão , Peptídeos/análise , Proteínas de Vegetais Comestíveis/análise , Proteômica/métodos , Espectrometria de Massas em Tandem
14.
J Agric Food Chem ; 69(47): 14092-14102, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793147

RESUMO

5-n-Alkylresorcinols (AR) are bioactive compounds found in the edible parts of many cereals. Here, saturated and unsaturated homologues, including the oxidized forms 5-(2'-oxo) AR and their plant metabolites, were profiled by ultrahigh-performance liquid chromatography-ion mobility separation-high-resolution mass spectrometry in 18 cultivars of einkorn, emmer, spelt, common wheat, and tritordeum, cultivated in two consecutive years under uniform agronomic conditions. The average content of AR ranged between 672.5 ± 129.8 and 1408.9 ± 528.0 mg/kg, exceeding 2380 mg/kg in some samples and highlighting a superior content in tritordeum and in modern cultivars with respect to old wheat genotypes. By evaluating the effect of environmental and agronomic factors on the different variables, the harvest year resulted to be always significant, while location and variety influenced AR abundance only for some homologues. Furthermore, the spatial distribution of AR was investigated by mass spectrometry imaging using transversal cross sections of wheat kernels. Our results show that AR homologues are mainly localized in the testa and in the outer pericarp of wheat kernels.


Assuntos
Grão Comestível , Triticum , Cromatografia Líquida , Genótipo , Triticum/genética
15.
Plants (Basel) ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34834778

RESUMO

Rye (Secale cereale L.) has been at the basis of agriculture for centuries in most mountainous and northern areas of Eurasia, because it is more resistant than other cereals to low temperatures and poor soils. Rye deserves to be re-evaluated as a source of "environmentally resilient" genes in the future as well, and particularly in a perspective to grow cereals able to withstand global warming. According to recent studies, modern rye varieties have a relatively narrow genetic pool, a condition that is worsening in the most recent breeding processes. The preservation of local landraces as unique sources of genetic diversity has therefore become important, in order to preserve the genetic heritage of rye. In this study, genetic diversity of rye landraces collected in a sector of the Italian Alps particularly suited to traditional agriculture was investigated using the ddRADseq technique. A few landraces still managed with family farming turned out to be genetically distant from the commercial varieties currently in use, highlighting that the phenomenon of homogenization of the local genetic pool can be still circumvented. Ex situ conservation of genetically divergent landraces is a valid tool to avoid the dissipation of an as yet unexplored genetic potential.

16.
Food Res Int ; 148: 110617, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507761

RESUMO

Wheat, an essential ingredient for several bakery preparations, is also responsible for gluten-related diseases in sensitive subjects. The effect of the N fertilization rate (80 vs 160 kg N ha-1) on gluten protein expression profile has been evaluated considering two soft wheats (landrace and modern) and one tritordeum cultivar (cv), grown in the same experimental field in North Italy. The proteins of refined flour were characterized through advanced proteomic approaches, including chromatography (RP-HPLC) and electrophoresis. A static model system was used to simulate in vitro digestion and the digestome peptides were examined by mass spectrometry and in silico approaches, to investigate the celiac and allergenic sequences. The CD-toxic epitopes in the digested samples were quantified by means of a R5 ELISA assay. The N fertilization rate increased the grain protein content, but it did not lead to any difference in gluten composition, with exception of glu/glia ratio in the modern wheat cv. Moreover, the gluten composition and the occurrence of toxic/allergenic epitopes varied to a great extent, according mostly to the genotype. A lower immunoreactivity, determined using R5 ELISA, was detected for the digested tritordeum flours than for the landrace (-51%) or modern (-58%) cvs, while no significant difference was observed for the N rates between each genotype. In silico analysis showed that tritordeum has fewer CD epitopes belonging to the ω-gliadins and a lower LMW-GS than the landrace or modern cv. Tritordeum presented fewer α-gliadin allergenic epitopes than the modern wheat cv. The lower frequency of celiac epitopes in tritordeum, compared to the old and the modern wheat, is probably due to the absence of a D genome.


Assuntos
Doença Celíaca , Triticum , Fertilização , Humanos , Nitrogênio , Proteômica
17.
Toxins (Basel) ; 13(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34564657

RESUMO

Fusarium proliferatum and Fusarium subglutinans are common pathogens of maize which are known to produce mycotoxins, including moniliformin (MON) and fumonisins (FBs). Fungal secondary metabolism and response to oxidative stress are interlaced, where hydrogen peroxide (H2O2) plays a pivotal role in the modulation of mycotoxin production. The objective of this study is to examine the effect of H2O2-induced oxidative stress on fungal growth, as well as MON and FBs production, in different isolates of these fungi. When these isolates were cultured in the presence of 1, 2, 5, and 10 mM H2O2, the fungal biomass of F. subglutinans isolates showed a strong sensitivity to increasing oxidative conditions (27-58% reduction), whereas F. proliferatum isolates were not affected or even slightly improved (45% increase). H2O2 treatment at the lower concentration of 1 mM caused an almost total disappearance of MON and a strong reduction of FBs content in the two fungal species and isolates tested. The catalase activity, surveyed due to its crucial role as an H2O2 scavenger, showed no significant changes at 1 mM H2O2 treatment, thus indicating a lack of correlation with MON and FB changes. H2O2 treatment was also able to reduce MON and FB content in certified maize material, and the same behavior was observed in the presence and absence of these fungi, highlighting a direct effect of H2O2 on the stability of these mycotoxins. Taken together, these data provide insights into the role of H2O2 which, when increased under stress conditions, could affect the vegetative response and mycotoxin production (and degradation) of these fungi.


Assuntos
Ciclobutanos/metabolismo , Fumonisinas/metabolismo , Fusarium/química , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Produtos Agrícolas/microbiologia , Ciclobutanos/análise , Fumonisinas/análise , Itália , Zea mays/microbiologia
18.
Food Chem ; 353: 129489, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714114

RESUMO

High-amylose corn alone or in combination (25% and 50%) with conventional corn was used to produce gluten-free pasta. Flour pre-gelatinization in a tank (process A) or on a conveyor belt (process B) were tested. Resistant starch (RS), soluble (SPAs) and cell-wall bound phenolic acids (CWBPAs) and antioxidant capacity were significantly higher in high-amylose corn pasta. Cooked pasta from process B showed a higher SPA concentration, likely due to the lower cooking loss. The structure of pasta prepared with process B was more homogeneous, whereas it was more compact in the case of process A, as shown by a lower starch susceptibility to α-amylase hydrolysis, higher beginning of gelatinization temperature and lower water absorption. 25% HA represents a good compromise between high RS (4.2%) and good cooking behavior. At higher HA levels, process B is more suitable to obtain pasta with a better cooking quality.


Assuntos
Amilose/metabolismo , Culinária/métodos , Zea mays/metabolismo , Antioxidantes/química , Dieta Livre de Glúten , Farinha/análise , Hidroxibenzoatos/química , Amido/química , Temperatura
19.
Food Res Int ; 140: 109861, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648179

RESUMO

The use of maize in the food chain could be mainly limited due to its contamination by mycotoxins. As scarce information is available, the current study is aimed at collecting new data on the co-occurrence and the fate of the most frequent masked, modified and emerging mycotoxins and other second fungal metabolites in maize food products and by-products. Three maize lots, obtained in different growing seasons, were processed using two different degermination processes, a dry-degermination system or a tempering-degermination one, in order to compare the interaction between mycotoxins and the dry-milling management system. Whole grain before and after cleaning, and all the products and the by-products were sampled twice for each lot and were subjected to a multi-mycotoxin LC-MS/MS analysis. More than 30 mycotoxins and other fungal metabolites, including masked or modified forms, co-occurred in all the maize milling fractions. Grain cleaning reduced all the detected fungal metabolites by 1.2-2 times, compared to the grain before cleaning. Animal feed flour showed the highest content of almost all the mycotoxins and fungal metabolites, with a consequent negative impact on animal health. Considering that for all the mycotoxins and fungal metabolites an inverse relationship with particle size was observed, flaking grits represented the healthiest maize products with the least contamination level, while the abatement was always lower for maize flour. Furthermore, the metabolites were variably redistributed in the maize fractions. The total aflatoxins, kojic acid, deoxynivalenol and its modified form, culmorin, and its associated forms, butenolide, fusaproliferin, fusaric acid, fusarinolic acid and, in some cases, zearalenone and its modified forms, and fusarin C were found to be concentrated significantly in the germ. Some of them also had a greater permanence in the maize food fractions and a weaker decontamination, both of which point to a higher risk of exposure for the end consumers. The co-occurrence of a such a high number of mycotoxins and fungal metabolites and their different fates during the dry-milling process have never been described before.


Assuntos
Micotoxinas , Animais , Cromatografia Líquida , Contaminação de Alimentos/análise , Micotoxinas/análise , Espectrometria de Massas em Tandem , Zea mays
20.
Microorganisms ; 9(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669359

RESUMO

The enhancement of Fusarium head blight (FHB) resistance is one of the best options to reduce mycotoxin contamination in wheat. This study has aimed to verify that the genotypes with high tolerance to deoxynivalenol could guarantee an overall minimization of the sanitary risk, by evaluating the contamination of regulated, modified and emerging mycotoxins on durum wheat cvs with different degrees of FHB susceptibility, grown under different meteorological conditions, in 8 growing seasons in North-West Italy. The years which were characterized by frequent and heavy rainfall in spring were also those with the highest contamination of deoxynivalenol, zearalenone, moniliformin, and enniatins. The most FHB resistant genotypes resulted in the lowest contamination of all the mycotoxins but showed the highest deoxynivalenol-3-glucoside/deoxynivalenol ratio and moniliformin/deoxynivalenol ratio. An inverse relationship between the amount of deoxynivalenol and the deoxynivalenol-3-glucoside/deoxynivalenol ratio was recorded for all the cvs and all the years. Conversely, the enniatins/deoxynivalenol ratio had a less intense relationship with cv tolerance to FHB. In conclusion, even though the more tolerant cvs, showed higher relative relationships between modified/emerging mycotoxins and native/target mycotoxins than the susceptible ones, they showed lower absolute levels of contamination of both emerging and modified mycotoxins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...